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Abstract 

We use representation theory for the semisimple Lie group G = SU(n, 1) to develop the L2 
harmonic analysis for differential forms on the complex hyperbolic space H”(C). In this setting, 
most of the basic notions and results known for functions are generalized: the abstract Plancherel 
theorem, the spectrum of the Hodge-de Rham Laplacian, the spherical function theory, the spherical 
Fourier transform and the Fourier transform. In addition, we calculate explicitly the Plancherel 
measure and estimate the decay at infinity of the heat kernel H,(e). 0 1999 Elsevier Science B.V. 
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1. Introduction 

While harmonic analysis of functions on noncompact Riemannian symmetric spaces 
G/K is well understood for more than a quarter of a century (see the major reference [ 18]), 
harmonic analysis of sections of homogeneous vector bundles over the same spaces has been 
an intensive subject of study during essentially the last decade. Among many references, 
let us cite for instance [30,38,40] for the Poisson transform theory, [9,19,29,30,32] for 
the spherical function theory, and [8,9] for the Fourier transform theory. Most of these 
works deal with a quite large class of situations. On the other hand, restricting the study 
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to particular bundles andlor to particular symmetric spaces allows more precise and more 
readable results: see e.g. [10,13,14,36,37]. 

The present article is devoted to the harmonic analysis on the bundle of differential forms 
over the n-dimensional complex hyperbolic space G/K = SU(n, l)/S(U(n) x U(1)) = 
H”(C), which constitutes one of the three classical families of Riemannian symmetric 
spaces of noncompact type and of rank 1. The case of differential forms over real hyperbolic 
spaces was studied extensively in [3 11 (see [32,33] for an exposition), and here we use similar 
methods to develop the Fourier transform theory (inversion and Plancherel formulas with 
both algebraic and analytic points of view) as well as related geometric aspects (L” spectrum 
of the Hedge-de Rham Laplacian and behaviour of the heat kernel at the origin). As a matter 
of fact, part of the information was scattered throughout the literature and it is surprising 
that it was not put together - as far as we know - to answer natural questions of interest. 
Comments and historical references will be given throughout the paper. 

The article is organized as follows: in Section 2 we recall some definitions and basic facts 
about differential forms on the Hermitian symmetric space Hn (C). The main observation is 
that any differential form on H”(C) = G/K can be viewed as afunction of(right) type t on 
G, where t is a specific (complex) finite-dimensional unitary representation of K. More pre- 
cisely, f is a function on G, having values in the representation space V, of t, and such that 

fW = tW’f(x) 
for any x E G and any k E K. This allows in particular an identification between the space 
LEAK H”(C) of square-integrable differential r-forms on H”(C) and the space L*(G, K, tr) 
of square-integrable functions of type rr on G, where r,. is the rth exterior product of the 
complexified coadjoint representation of K on the dual p* of the tangent space p 2: g/t 2: Cn 
of G/K at the origin. The decomposition of r,. into K-irreducible components corresponds 
then to the well-known Lefschetz decomposition into primitive elements of an r-form on 
the complex manifold Hn (C). 

In Section 3, by particularizing Harish-Chandra’s Plancherel theorem, we state an ab- 
stract Plancherel formula for the space L*(G, K, r,), i.e., we give its decomposition into 
G-irreducible components, which are either principal series or discrete series representa- 
tions of the group G. The continuous part of the formula is carried out by examining the 
decomposition of the restriction of rr to the classical subgroup M of K, while the discrete 
part uses a general result due to Borel. 

The calculations made in Section 3 are used in Section 4 to determine explicitly the 
L* spectrum of the Hodgede Rham Laplacian. We construct also Poisson transforms (of 
Rumin differential forms) that are eigenforms for the Laplacian. 

In Section 5, we give the analytic counterpart of the abstract Plancherel theorem. We de- 
velop first a spherical Fourier transform theory based on the study of t-sphericalfunctions. 
The main result is the inversion formula for this transform. Then, by standard arguments, we 
derive the inversion and Plancherel formulas for the Fourier transform of differential forms. 

In Section 6 are computed very explicitly the Plancherel measures associated with the 
principal series representations that appeared in the Plancherel formulas previously stated. 
These expressions are used also in Section 7, which is devoted to the behaviour of the trace 
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of the heat kernel Ht (x) associated with differential forms on the complex hyperbolic space, 
whenx=eistheneutralelementofG=SU(n,l)andt++cc. 

2. Notations and preliminaries 

The n-dimensional complex hyperbolic space is the manifold 

H”(C) := {x E en+’ : L(x,x) < 0)/c*, 

where L is the Hermitian Lorentz form 

ux, Y) = FlXl + . . . + ynxn - Yn+1&+1* 

For our purpose, we shall view the complex hyperbolic space as the rank 1 symmetric space 
of noncompact type G/K, where G = SU(n, 1) and K = S(U(n) x U(1)) is the maximal 
compact subgroup of G which stabilizes the base point o := (0, . . . , 0, 1)C”. 

Denote, respectively, by g and f the Lie algebras of the groups G and K. As usual, write 
g = f @ p for the Cartan decomposition of g. The tangent space T,(G/K) N g/f 2: p of 
G/K = H”(C) at the origin o = eK will often be identified with the vector space C” by 
means of the isomorphism 

x= On x MX ( > x* 0 (2.1) 

(with x* := ‘X) so that the Euclidean inner product 

gO(X, Y) := Re(y*x) (2.2) 

on p induces by translations a G-invariant Riemannian metric g on H” (C), for which this 
manifold has sectional curvature -4 5 K 5 - 1. Similarly, the Hermitian inner product 

h&X, Y) := y*x (2.3) 

on p induces a G-invariant Hermitian metric h on H”(C), for which Hn (C) is a Kahlerian 
manifold of dimension 2n over R. 

We recall now some basic facts about differential forms on the Hermitian symmetric 
space H”(C) (see e.g. [39, Ch. I and V] and [4, Ch. II]). 

Let 0 5 r 5 2n. A (complex-valued) differential r-form on H”(C) is a section of the 
vector bundle A’ EC, where E = T* H” (C) is the cotangent bundle over Hn(@) (here and 
thereafter, the functors .* and ‘@, denote, respectively, algebraic duality and complexification 
of real vector spaces). We set 

r A’ H”(C) := {differential r-forms on Hn(@)}, 
2n 

I?IH”(C):=$I?’ H”(C), 
r=O 
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and shall replace ‘r’ by ‘C,‘, ‘Coo’, ‘Cca’ or ‘L2’ if the sections encountered are, respec- 
tively, continuous with compact support, smooth, smooth with compact support or square 
integrable. The complex structure J on p is both induced by the identification (2.1) and by 
the adjoint action of the generator 

zO=(+-l 211 

of the centre of t. Obviously, J extends to a C-linear automorphism of pc and, since 
J2 = -id, we denote by ph the eigenspace corresponding to the eigenvalue fi, so that 
pa: = p+ @p_ 2: p@,. Note that both metrics g and h are J-invariant. For 0 ( p, q ( n, set 

lYp,qp :=/Pp+ @ r\qp_ 

= Vecto){ur\v, u E /\pp+, v E Aqp_}. 

A {complex-valued) differential (p, q)-form on H”(C) is a section of the vector bundle 
AP3q E, and we denote by r AP-4 H”(C) the set of such elements. The decomposition 

A’p; = A’(pF @p*_) = @ App; ‘8 A4p: = @ II”~P* 

p+q=r p+q=r 

induces a similar decomposition on each fibre A’ E,.a, over x E H”(C), so that 

f A’ H”(C) = @ f Ap’q Hn(C). (2.4 
p+q=r 

Let us give now some essential identifications that will be used throughout this paper. 
If t is a unitary finite dimensional representation of K on a Hilbert space V,, we say that 

a function f : G += V, is of(right) type t if it verifies the relation 

f(xk) = t(k)+(x) (Vx E G, Vk E K), (2.5) 

i.e., if f is a section of the homogeneous vector bundle G x K V, over G/K. We shall denote 
by r(G, K, t) the space of functions of type t on G and, as above, shall change ‘f ’ for 
‘Cc’, ‘P’, ‘ Ccm’ or ‘L2’ when needed. Once we fix a Hermitian inner product on VT and 
a Haar measure dx on G, the scalar product on L2(G, K, t) is given by 

(fl, f2> = 
s 

dx(fi (xLf2(x>)v,. (2.6) 

G 

Let Ad denote the adjoint representation of G. Since any element of K can be written as 

U E U(n), v E U(l), with detU = v-l, (2.7) 

K acts on p E C” by Ad(k)X z Uxv-‘, and this action preserves the complex structure 
J. Therefore 

~a, = P+ @ P- and P$ 2: iiT = pr (2.8) 
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as K-modules identities. For 0 L r ( 2n, let 

r,. := r\‘(Ad: $ Ad?) ” A’ (Ad* $ Ad*) 

be the representation of K on A’P* - A’ (p: @ ~5). Then it is well known that the bundle 
r\‘E@canbeviewedasG xK “rY?sithatwehave 

r A’ Hn(@) = r(G, K, tr). (2.9) 

Similarly, for 0 ( p, 9 5 II, Ap94 E 2: G x K VzP,, and 

r ~~~~ Ha(C) = r(G, K, T~,~), (2.10) 

where 
- 

TP.4 := APAd; @ AqAd: 2i APAd @ AqAd (2.11) 

is the representation of K on Ap,qp* = App$ @ Aqp?. Thus 

rr = (33 rp,q and r(G, K, G) = @ r(G, K, rp,q). 
pfq=r p+q=r 

Remind also the classical isomorphisms 

r(G, K, s~,~) 2: r(G, K, z~,~) (@-conjugation isomorphism), 

r(G, K, tp,q) 2: r(G, K, tn_q,n-p) (Hodge duality), 

r(G, K, r,.) 21 r(G, K, ~2~~~) (idem). 

Let 52 E r(G, K, tl, 1) be the (closed) fundamental form on H”(C) associated with the 
Hermitian metric h, i.e. for any x E H”(C), 0, = Im h, E r A’,’ Ex. Denote by w E 
A”‘p* the corresponding element such that fingK = g XK o. Let L be the homogeneous 
operator of bidegree (1, 1) on Ap,qp* which is left multiplication by w. Remind that an 
element in Ap,qp* is called primitive if it lies in the kernel of the L2 adjoint L* of L. We 
shall denote by rL,q the restriction of rp,q to its primitive part, i.e., K acts on the subspace 
Ai’qp* of primitive vectors in Ap,qp* by T;,~. These representations are then irreducible 
and two by two inequivalent (use Lemma 6.2). 

In our setting, the kfschetz decomposition of an element of Apsqp* - or, analogously, 
of a (p, q)-form on H”(C) - (see [39, Ch. V, Theorem 3.121) gives in the same time the 
K-decomposition of the representation rp,q. 

Proposition 2.1. Let 0 I p, q I n. Then 

min(p4) 
,,nqp* = @ Lk A;-k.q-k p* 

k=O 

is a decomposition into irreducible K-modules. Moreover, for each k, Lk A~-“‘“-” p* is 

K-isomorphic with A~-k’q-k * p and occurs with multiplicity 1. 

Proof. See [20, Proposition 3.11 or [4, Ch. VI, Lemma 4.91. 0 
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In the sequel, we shall often refer to this result by writing more simply: 

min(p,q) 
t P.9 = @ &q-k. 

k=O 

Since L and L* extend naturally to G-invariant bundle operators, we have a corresponding 
decomposition for the space r(G, K, T~,~). Moreover, since L and L* commute with the 
Hodge-de Rham Laplacian A, it shows also that the spectrum of A is completely determined 
by the spectrum of its restriction to primitive differential forms (see Section 4). 

Finally, let us point out that, by Hodge duality, we can, and shall from now on, restrict 
our study to 0 5 r 5 n, i.e., to 0 5 p + 9 i II. 

3. The abstract Plancherel theorem 

Since the Plancherel theorem (i.e. the decomposition into G-irreducible modules) for the 
space L2 A’ H”(C) E L2 (G, K, z,.) of square-integrable differential r-forms on H” (C) 
derives from the one of L*(SU(n, l)), we recall first some standard facts of representation 
theory for the real rank one semisimple Lie group G = SU(n, 1). The material can be 
found in generality in, e.g., [23]. 

We begin with some notation. Let 

0 0 1 
Ho= 0 0,-l 0 up. 

( 1 1 0 0 
(3.1) 

Then a := RHO is a Cartan subspace in p, and the corresponding analytic Lie subgroup A 
of G is parametrized by elements 

Let (II E a* be defined by a(tHo) = t. Then R(g, a) = {&a, f2o} is a restricted root 
system of (g, a) with positive subsystem R+(g, a) = {a, 2c~) and corresponding Weyl 
group W = W (g, a) 2: {&id). Later on, we shall often use the identification 

Let n = go1 @ gza be the sum of the positive root subspaces, N the corresponding analytic 
subgroup of G and p the half-sum of roots in R+(g, a), counted with their multiplicities. 
Thenp = ~(m,a+m2,2a) = na,sincem, = dimg, = 2(n-l)andmz, = dimgZIY = 1. 
Remind the classical decompositions 

g=t@a@n, G = KAN (Iwasawa), G = K(a,, t 2 0)K (Cartan). 
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Let M be the centralizer of A in K and P = MAN the usual (minimal) parabolic subgroup 
of G associated with A and N. Given u E M and h E a; 2: C, the following action 

(0 @ eih 18 l)(matn) = eihr(r (m) 

defines a representation of P on the space V,. Then the principal series representation 

%,A. := Indg (a 8 e” @ 1) of G acts on the space 

H,J = L2(G, MAN, CT @ eih 8 1) 

:= (f : G -+ V, : f(xmarn) = e-‘ih+P”a(m)-‘f(x), fi, E L2(K)} 

by left translations: n,,h(g)f(h) = f (g-‘h). With this parametrization, TC,,~ is unitary 
if and only if h is real, Moreover, unitary principal series representations are always irre- 
ducible, except maybe when h = 0 (a criterion is recalled in the proof of Corollary 6.3). 
Note also that, as K-modules, ‘l-t,,* is isomorphic (for any h) with the space L*(K, M, a) 
of square integrable functions on K such that f(km) = cr(m-‘)f(k). 

Since g and f have common rank n, the group G has discrete series representations, 
i.e., irreducible unitary representations with L2 matrix coefficients. If (n, ‘FI,) is such a 
representation, denote by dz its formal degree. We let cd be the subset of discrete series 
in G^. 

For all real rank one semisimple connected Lie groups G, Harish-Chandra’s Plancherel 
theorem can be stated as follows (see e.g. [25, Section 111): for each d E M^, there exists a 
Plancherel measure du, (h) on a* such that 

(the symbol % means Hilbert completion). The meaning of W\(h? x a*) is the following: 
according to [5, Theorem 7.21, when h is real, X,,A is unitarily equivalent with rr,f,hf if 
and only if there exists an element w E W such that the pair (w . cr, w . A) is equivalent 
with (o’, A’) (the action of such a w will be precised later on). Consequently, since the 
contribution of principal series must be taken up to unitary equivalence, one must reduce 
the support of the direct integral to only one representative of each equivalence class (CT, A) 
of d x a* under the action of W. 

Now, let r be a finite-dimensional unitary representation of K. Since L2(G, K, t) can be 
identified with { L2 (G) @ VT } ‘, where the upper index K stands for the space of K-invariant 
vectors for the right action of K on L2(G), (3.2) implies the decomposition 

c?3 

L2(G, K, t) ‘” 
s 

dv,(Q%,~ GHom(%,h, VT) 

W\(M^xn*) 

CD @ d,XFI, GHomK(‘FI,, V,). 
IT&d 

(3.3) 
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Note that each vector space HomK(., V,) is finite-dimensional, since every irreducible 
unitary representation of G is admissible. In the sequel, we shall denote by Z,*(G, K, T)~ 
(respectively by L2(G, K, t)d) the continuous (respectively discrete) part of L*(G, K, t) 
that corresponds to the decomposition (3.3). In order to reduce as much as possible this 
decomposition when G = SU(n, l), K = S(U(n) x U(1)) and t = r,, we must now 
determine whenever the spaces HomK (tiD,h, VTT) and HomK (7-1,) VTr) are nontrivial. 

3.1. Principal series representations decomposing L2 (G, K, tr ) 

We remark first that, by Proposition 2.1, it suffices to determine L2(G, K, T)~ for r = 
&, with 0 ( p + q 5 n. Since ‘J-&J is L*(K, M, a) as a K-module, by Frobenius 

reciprocity, 

HomKO-l,~, Vr;q> 2: HomMW,, V+,q) (VA E a:>, 
so that we must examine how the K-representations r; 4 restrict to the subgroup M. The 
method consists in calculating their highest weight, and then, in applying classical branching 
rules to get their M-decomposition. 

With the choice of a that was made previously, the Lie algebra m C e(u(l> x u(n - 1) x 
u( 1)) is constituted with elements 

v 0 0 

( 1 

ouo, U~u(n-1), Van, withtrU+2u=O. (3.4) 
0 0 V 

Let K!J (resp. t) denote the Cartan subalgebra of I (resp. of m) constituted with diago- 
nal elements. For 1 5 i 5 n + 1, denote by si the linear functional on ha, defined by 
si(diag(hr, . . . , h,+l)) = hi. We shall keep the same notation for its restriction to tc. It is 
a classical result that the roots of the pairs (tc, 6~) and (me, tc> are, respectively, 

RK := R&, 6~) = {ei - Ej, 1 5 i # j 5 n), (3.5) 

RM := R(mc, t@) = {si - cj, 2 ( i # j 4 n}, (3.6) 

while the corresponding positive subsystems (for the ‘lexicographic’ ordering) are given by 

RK+ = {ei - Ej, 1 5 i < j 5 n), 

Ri = (Ei-Ej, 25i < jin}. 
(3.7) 

Let (ei)y=i denote the standard basis of p E CU. Because of (2.7), the weights of the 
adjoint representation Ad of K are the si - cn+r, with corresponding weight vectors ei 
(1 5 i ( n). Thus the highest weights of the irreducible representations r\PAd and r\qAd 
of K are, respectively, 

4 

IlAP;c;i = - 2 
Sk + p &+I 3 p.^qAd = c Ek - 4 E,+I. 

&n-p-t1 k=l 
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It follows then from definition (2.11) and from [4, Ch. VI, Lemma 4.91, that the highest 
weight of T;,,~ is 

9 II 

fi$l, = c Ek - c &k + (P - 4h+l. (3.8) 
k=l k=n-p+l 

Applying the branching laws from K to M (see [l, Theorem 4.41 or [2, Theorem 10.5]), 
we see that, generically, 

t ’ ’ PJJlM = aPJ cl3 $,.q 63 &_, G3 $+_lt (3.9) 

where each M-type 0,: h occurs with multiplicity 1 and has highest weight 

a-b b+l 

%.h = 2(&I +e,,+l)+Cek - 2 Ek. (3.10) 
k=2 k=n-a+1 

By ‘generically’, we mean that we set u: b =Oifmin(a,b) <Oormax(a,b)>n-1,so 
that one or several factors may vanish in i3.9) for certain values of p and q. 

Let us identify concretely the representations D;,~. The space p admits the decomposition 

p=a@ql CBq2,where 

With the analogue of notation (3.4) on the group level, the adjoint action of M on q 1 is given 
by Ad(m)Y = Uyu-‘. The complex vector space q1 inherits from p an Ad(M)-invariant 
complex structure, so that we can write, similarly to (2.8), q I = q 1, + @q 1, _ as an M-module 
decomposition. For 0 5 r 5 2(n - 1) and 0 5 p, q 5 n - 1, set 

or = A’ (Ad*, @ Ad:), 

(T p,4 = APAd; @ AsAd*_, 

so that Up = @P+q=P~P.4. Then it is easily checked, by computing weights, that the rep- 
resentation 17; q appearing in (3.9) is exactly the restriction of a,,, to primitive vectors in 
A%;,+ @ Aqd; _. 

We can now summarize our results and derive easy consequences. 

Proposition 3.1. Let 0 5 p + q ( n. Then, with notations above: 

(I) Set ol,q = 0 if min(p, q) < 0 or max(p, q) > n - 1. We have the following 
decomposition into irreducible inequivalent multiplicity 1 factors: 
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More precisely, seven disjoint cases must be distinguished: 
(i) t’ p>q1M = oL.4 @o;-l,q @~~q_l@~~_I,q_lif15p,q~n-2andp+qin-1; 

00 r; q,M = $_l q @ ui q-l @a~_l,q_lz~l~p,q~n-landp+q=n; 
(iii) rAqlM =a;, &al,,_‘, ifp=Oand 1 sq_(n-1; 
(iv) t’ p.O,M = a,::0 @ g:‘-I,0 zfq=Oand llpsn-1; 
(v) rA,n,,,,r = a&-t if p = 0 and q = n; 

(vi) ri o,M = gL_, c if p = n and q = 0; 
(vii) r;).oJM = 0& $ p = q = 0. 

(II) We have the following decompositions into irreducible inequivalentfactors: 
min(p.q) miNp.q) 

6) ~Pdlhf = $l.q @ @ $L.q-k+I @ a;-,,I,,-k) @ @ 2&k,,-,: 
k=I k=l 

(ii) if 0 5 r _( n - 1, 

(iii) if r = n, 

q,$.f = 03 2qi.q @ @ 34J.q. 
p+qsn-1 p+q=n-2 
Pf&-2 

Remark. The decomposition (3.9) appeared previously in many references: [4, Ch. VI, 
Section 4.101, [14, Section 1.21, [21, Section 41 and [6, Lemma 4.111. 

If t E K^, denote by G(r) the subset of E whose elements occur in the decom- 
position of tly. As a consequence of the previous proposition, we see that each space 
HomK (?-I,,*, VT;,,) is one-dimensional, so that we can write: 

@ 

L*(G, K, ~;,~)c = s duo W%,A. (3.11) 

W\(M^(+/)xn*) 

Thus, it remains only to examine the effect of the action of the Weyl group on the principal 
series representations. Remind that W can be realized as the quotient M’/M, where M’ 
is the normalizer of A in K. Since I WI = 2, let us denote by w = m’A4 the nontrivial 

element, where m’ = 
( 

-i? ,no, 
> 

. It acts on a representation n,,~ by w . TC~.~ = nw,o.w.~, 

where w . a(m) = a(m’-‘mm’) and w . A(H) = h(Ad(m’)-‘H). But, since elements of 
tc are diagonal, w acts trivially on the weights of any representation of 2. In particular, 
for any 0 E $(rL.q), w - CJ = CT. On the other hand, it is clear that w . h = -A. Hence rc,,~ 
is unitarily equivalent with n,,_h. Consequently, the support in the integral in (3.11) can 
be reduced to $(rL,q) x a:, where a$ denotes as usual the positive Weyl chamber in a* 
and can be identified with rW> =]O, +oo[. Of course, as concerns the Plancherel measure 
dv, (h), the Weyl group invariance shows that is an even function of h. 
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Our next result follows from these considerations and from Proposition 3.1. 

Theorem 3.2. Let 0 5 Y 5 n. The continuous part of the Plancherel formula for the space 
L*(G, K, tr) of L* diflerential r-forms on Hn (C) is given by thefollowing decompositions: 
(i) tfO<rcn-1, 

L*(G, K, rr)c = @ f dvo;,y Q) %;,,,A @ @ 
P+q=‘R* 

2 /I dvc;.$h) %;,q,h; 

+ 
p+qsr-1 w* 

+ 

(ii) if r = n, 

Remark. The Plancherel measure dvD;,4 (h) will be explicitly determined in Section 6. 

3.2. Discrete series representations decomposing L*(G, K, tr) 

We first recall a general result due to Bore1 ([3, Theorem A]) in the elementary presentation 
that was given in [3 1, Appendix A]. 

Let G/K be a Riemanman symmetric space of the noncompact type such that G and K 
have equal complex rank. Let lj c E c g be a Cartan subalgebra, and denote by RK = 
R&, Ijc) c RG = R(gc, 8~) and by WK c WG the corresponding root systems and Weyl 
groups. Once a positive subsystem Ri in RK is fixed, there are exactly 1 = ( WG(/~ WK) 
positive subsystems in RG whose intersection with RK coincides with Ri . Let Rz be one 
of them and let ilj$ denote the corresponding positive G-Weyl chamber in ilj. Then any 
positive subsystem in RG can be written as Wj . R& where wi, . . . , WI are distinguished 
representatives of WK \ WG in WG . Let 6~ and 8K denote, respectively, the half-sums of roots 
in R& and Ri . Recall that discrete series representations are, up to equivalence, uniquely 
determined by their Harish-Chandra parameter Wj .A, where A E (if&* is such that A +6G 
is analytically integral (see e.g. [23, Section 1X.71). Finally, let rr be the representation of 
K such that L* A’ (G/K) z L*(G, K, tr). 

Theorem 3.3. Let m be the dimension of G/K. Let L*(G, K, rr)d denote the discrete part 
of L*(G, K, t,). Then 

WI ifr#t, 

L2(G, K, rr)d = ' 

a3 
nWj .SG 

ifr=E 

2’ 
j=l 

where the rc,, .ao are exactly the discrete series representations of G having trivial injinites- 
imal character and each of them occurs with multiplicity 1. Moreover the square integrable 
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harmonicfonns on G/K consists exactly of the discrete series contribution to L2 (G, K, t,.): 
each n,,,,..~o is realized in L2(G, K, t,,,/2) on the null space for the Casimir operator D 
acting on L2 (G, K, t,, ), where tPi is the multiplicity free irreducible subrepresentation of 
~~12 with highest weight pj = Wj . 266 - 26~ and is the minimal K-type of n,,.dc. 

In this result, it is understood that -A is realized by the action of the Casimir operator 
on P(G, K, tr): see Kuga’s formula in [4, Ch. II, Theorem 2.51. It follows then also that 
the Laplacian A has no (discrete) eigenvalue on L2 A’ (G/K), except 0 (with infinite mul- 
tiplicity) when r = m/2. The entire spectrum of A in our setting will be given in Section 4. 

Let us now apply the theorem to our case G/K = H”(C). As before, let h c f c g be 
the Cartan subalgebra constituted with diagonal matrices. With notations above, 

RG := R(gc, tic) = {ei - ej, 1 5 i # j 5 n + l}, 

while RK and Ri were, respectively, defined in (3.5) and (3.7). The Weyl group WG (resp. 
WK) is the group of permutations of n + 1 (resp. of n) elements. Therefore, there are 
I = n + 1 positive subsystems in RG that are compatible with RL. Choose 

Rz=(ei-ej, lli< jin+l]. 

Then all the compatible positive systems in RG are obtained as follows (see [2, Section 111). 
Denote by sp the reflection through the root p and put 

n 
Wj = 

I-I 
s~~-~,+, (0 5 j 5 n - 11, w,* = id. 

k=j+l 

Then WK\ WG = { WK . Wj, 0 5 j 5 n} and the n + 1 positive systems in RG that are 
compatible with Ri are exactly the wj - Rb, with 0 4 j 5 n. The sums of positive roots are: 

n+l 
28~ = c(n + 2 - 2k)&, (3.12) 

k=l 
n 

26~ = c(n + 1 - 2k)Ek. (3.13) 
k=l 

In view of Theorem 3.5, we must determine now the highest weights lj of the minimal 
K-types rPj of the discrete series n,,. +. Again, by Lemma 11.16 in [2], we have 

k=I 
ek f (n - 2jh+l (0 5 j 5 n>e 

k=j+l 

In other words, 

This identification completes the proof of the following result. 
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Theorem 3.4. Let 0 ( r 5 n. The discrete part of the Plancherel formula for the space 
L2(G, K, tr) of L* differential r-forms on H”(C) is given by 

(01 ifr#n, 

L2(G, K, r,)d = @ L2(G, K, TJ,.~)~ if r = n, 
p+q=n 

where L’(G, K, zL,~)~ denotes the harmonic part of L*(G, K, rt!,q) and coincides with 
the Hilbert space of the discrete series representation z~,.J~. 

Remarks. 
1. This theorem wasfirstproved in [4], where all L* (g, K)- cohomology groups were cal- 

culatedfor real rank one semisimple Lie groups (Ch. VI, Theorem 3.8), and in particular 
for G = SU(n, 1) (Ch. VI, Theorem 4.11). In its weakform, i.e. as a (nonjvanishing 
theorem for the L* cohomology on H”(C), the theorem can also be derivedfrom results 
stated in more general settings by geometers: Donnelly and Fefferman (Theorem 1.1 in 
[ 121) for the case of pseudoconvex domains in C”, and Gromov ([ 15, Theorem 1.2.B]) 

for the extension to the case of Kahler hyperbolic manifolds. 
2. The theorem implies that L* harmonic forms are automatically primitive. Indeed, recall 

from Proposition 2.1 the Lefschetz decomposition 

Comparing with the theorem, we see that, for eachfixed p (and q = n - p), the K-types 
tl p-k q _k do not produce harmonic n-forms, except when k = 0. Roughly speaking, this 
is due to the fact that these K-types are ‘too small’ to be minimal K-types of discrete 
series with trivial infinitesimal character. Another (and simpler) explanation was given 
in [21], Corollary 2.5: since L* is bounded and commutes with A, L* maps L2 harmonic 
n-forms into L2 harmonic n - 2 forms, i.e., into zero by the theorem. 

3. The decomposition of L2(G, K, r,.) into irreducible components (Theorems 3.2 and 3.4) 
is realized by an appropriate Fourier transform. This will be developed in Section 5. 

It is well known that discrete series of G can be embedded into nonunitary principal series 
of G: this fact is a consequence of Casselman’s Subrepresentation Theorem (see e.g. [23, 
Theorem 8.371). As a complement of Theorem 3.4, we list explicitly the principal series 
representations in which our discrete series representations n,,.gc (0 5 q 5 n) appear as 
unitary components. Remind that two admissible representations are said infinitesimally 
equivalent if the subspaces of their respective K-finite vectors are isomorphic as (g, K)- 
modules. The proof of the following result derives from the tables in [2, Section 181. 

Proposition 3.5. Let p + q = n. 
(i) n,,,.g, is infinitesimally equivalent with a unitary submodule of 7c,,;p,,0,_i; 
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(ii) if 1 5 q 5 n - 1, rr,y.~G is inJnitesimally equivalent with a unitary submodule of 

n*’ andofn,! .* p-lJ/‘--’ &4-l’--” 
(iii) rrr,,+ is infinitesimally equivalent with a unitary submodule of n,~ “.,!-I s-i* 
In all cases, the discrete series submodules appear with multiplicity 1. 

Remark. An equivalent formulation of the proposition would be that the discrete series 
representations are infinitesimally equivalent with subquotients of certain nonunitaryprin- 
cipal series (namely, the ones with the same parameter o and with the opposite parameter 
+i instead of-i). This follows from the existence of a natural duality between nOSk and 
n,,h (see e.g. [23, Eq. (8.114)]). 

4. The spectrum of the Hodge-de Rham Laplacian 

We keep the notations of the previous sections. Let B denote the Killing form on g = 
Bu(n, 1). It is standard that 

B(X, Y) = 2(n + l)tr(XY) (X, Y E g). 

In order to recover the normalization of the inner product on n we made in (2.2), we put 

(.,.)= l 1 

B(Ho, Ho) 
B(., .) = ---B(., .), 

4(n + 1) 
(4.1) 

where Ho was defined in (3.1). Let 52 be the Casimir operator associated with the bilinear 
form on g defined by (4. l), i.e. 

D = Ca’jXi Xj, (4.2) 
i.j 

where (Xi) is any basis of g and (a’j) is the inverse of the matrix with coefficients ajj = 
Re(Xi, Xj). t Recall the identification (Kuga’s formula) 

on the space C”(G, K, t,.) of smooth differential r-forms on Hn(C). Thanks to the 
Plancherel theorem for L2(G, K, tr) (i.e., Theorems 3.2 and 3.4), the L2 spectrum of 
the Laplacian is obtained by studying the action of the Casimir operator on the various 
components occuring in the Plancherel formula. As was remarked in Theorem 3.4, discrete 
series representations with trivial infinitesimal character produce harmonic forms. On the 
other hand, it is well-known that R is a central operator in the enveloping algebra of g and 
that n,,h(D) is a scalar operator acting by a constant. More precisely, it follows from [23], 
Proposition 8.22 and Lemma 12.28, that 

(4.3) 

’ The same notation was introduced in Section 2 for the fundamental form on H”(c), but this object will 
not be used anymore in the sequel. 
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where A, is the infinitesimal character of cr. Let w,, be the highest weight of r~ and 26~ = 

~~=2(n + 2 - 2k)ek d enote the sum of the roots in RL. Then A, = pa + 8M, and an 
easy calculation gives 

n,.,(Q) = -((A, A) + (P, P) - ku,, KL, + 26MM))Id. 

Lemma 4.1. Let 0 5 p + q 5 n - 1. Then the identity 

n,, P.4’ ,(a) = --[a* + (n - p - q)*]Id 

holds on the space Cm(G, P, oL.y @ eih @ 1). 

Proof. It is an easy consequence of (3.10). 0 

Remark. The same result was observed in [6, Lemma 4.121. 

We state now the main result of this section. 

Corollary 4.2. For 0 5 p + q 5 2n, denote by specAP,, the L* spectrum of the Hodge- 
de Rham Laplacian on (p, q)-forms on Hn (@). Then 

specAp4 = 
[(n-p-q)*,+Oo[ ifp+q#n, 
(0) u [l, foo[ if p+q =n. 

Proof. Consider first the restriction Ab,4 of A,,, to primitive forms. The eigenvalues of 

Ab4 are given by Lemma 4.1 for o E G(rA,y). When p + q = n, as was noticed in 
Section 3.2, we must add the eigenvalue 0 coming from the action of discrete series. Using 
Theorems 3.2 and 3.4, and observing tbe contributions of the various c E G(ri,4) in each 
case, we see that the eigenvalues of Ab,4 are 

(h*+(n-p-q)*, hE[W} ifOsp+qFn-1, 
{O}U(h*+l, hER} ifp+q=n. (4.4) 

Since A preserves the Lefschetz decomposition for rP,4 (Proposition 2.1), i.e., 

min(p,q) 
A P34 = c LkA’ p-k,q-k? 

k=O 

and since the main contribution to the spectrum is given by Ab,4, i.e., 

spec Ab,4 5 spec Ab_,,,_, 5 . . . , 

it follows that (4.4) gives the exact L* spectrum of A,,, for 0 5 p + q 5 n. Then we use 
the Hodge duality spec A,,, = spec An_q,n_p. 0 

Remark. Similar considerations lead easily to the determination of the spectrum of the 
Bochner Laplacian, by using an explicit Weitzenbiick formula. We omit details. 
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When considering functions (i.e. O-forms) on symmetric spaces G/K, there is a classical 
way to construct eigenfunctions of the Laplacian (and even of the full algebra D(G/ K) of all 
invariant differential operators), which consists in taking Poisson transforms of hyperfunc- 
tions on the boundary K/M of G/K . This statement is known as Helgason ‘s conjecture and 
was first proved in [ 161 (rank 1 case) and [22] (general case). In the case of homogeneous 
vector bundles G x K V,, the extension of Helgason’s conjecture was examined in [ 13,141 
(for the differential forms bundle over real and complex hyperbolic spaces), [38] (for vector 
bundles over rank one symmetric spaces G/K), [30,40] (for vector bundles over general 
symmetric spaces G/K). See also [32] for the construction of Poisson transforms in the 
particular case of the bundle of differential forms over real hyperbolic spaces, and for other 
references in this particular setting. 

In this paper, our purpose, much more modest and easy, is only to exhibit sections of a 
certain vector bundle over the boundary G/P = K/M = S(cn) of G/K = Hn(@) whose 
Poisson transforms are eigenforms for the Hodge-de Rham Laplacian. 

As before, we can and shall restrict to primitive forms. In the sequel, fix 0 = c& 
with 0 5 p + 4 5 n - 1. For t E i? such that (T E G(t) (generically, t is one of 
t’ ’ P4’ tp+l,q~ $,q+l’ $+l,q+l ), denote by PJ the generator of the one-dimensional space 

HomK(ti,k, V,) z HomK(L2(K, M, a), V,) (for any k E a=) defined by: 

P,‘(f) := g 
Js 

dk t(k) f (k), Vf E P(G, P, o @J ei* 8 l), (4.5) 

K 

where dk is the Haar measure on K normalized by SK dk = 1. 2 In other words, Pi is a 
K-equivariant orthogonal projection of 7f ,,hontoV,.ForhEcandf EC~(G,P,~@ 
eih 8 l), set: 

&(X)(f) := P,’ 0 n,,h(x-‘) f W E G). 

Then it is easily checked that the function x ++ 4i,k (x)( f) is an element of CCO(G, K, t), 
i.e., is a primitive differential form on G/K. Moreover, since the map 

CCQ(G, P, o @ eih 8 1) - Cw(G, K, t) 

f - &(4(f) 

is continous, linear and G-equivariant, we call it the Poisson transform on CCQ(G, P, o @I 
eih @ 1). 

Proposition 4.3. Fix (T = oi,q with 0 5 p + q 5 n - 1 and let t E i? be such that 
0 E M(t). Since t is a K-type associated with a primitive differential forms bundle on 
H”(c), denote by A, the restriction of the Hodge-de Rham Luplacian to CW(G, K, T). 
Then,foranyAeE, f ??C~(G,P,o@e~*@l)andx~G, 

A+&(x)(f) = [A2 + (n - P - q)21 $&(x)(f ). 

2 The integers dim r and dim a will be computed in Lemma 6.2. 
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Proof. We apply Kuga’s formula and Lemma 4.1: 

M~:,,(d(f) = -4&(x : Wf) = -P,’ 0 JGJW 0 JG,,~-‘) f 
= P2 + (n - P - cd*1 ~:,*wm. ??

Remark. Julg and Kasparov ([21, Section 21) have noticed that elements of C”(G, P, (T @ 
eih @ 1) can be identified with Rumin differential forms on the contact manifold K/M (see 
[34] or [35] for a general definition of the Rumin complex). 3 In the same article, Section 4, 
the authors construct also very explicitly a Poisson transform (that they call ‘Szegii map’) 
which sends isomorphically Rumin (n - 1)-forms on K/M to L* harmonic n-forms on 
Hn (a=). 

5. Basic Fourier analysis 

5.1. Spherical functions and spherical Fourier transform of radial functions 

In [32], Section 34 (see also [9,10]), we showed that the spherical harmonic analy- 
sis on homogeneous vector bundles G XK V, over noncompact Riemannian symmetric 
spaces G/K, when t is irreducible and unitary, can be carried out similarly to the classical 
‘scalar case’ (i.e., when t = 1, see e.g. [17, Ch. IV]), provided that the triple (G, K, t) 
verify a certain condition. More precisely, denote by r(G, K, r, t) the set of t-radial 
functions on G, i.e., of functions F : G + End V, verifying the double K-equivariance 
condition: 

F&x/k*) = t(k& F(x)t(kl)-’ (Vx E G, Vkl, k2 E K). 

We say that (G, K, t) is a Gelfand triple if, endowed with the convolution product 

(F * H)(x) = 
s 

dy Oy-‘+f(y) = 
s 

dy F(yW(xy-‘L 

G G 

the algebra C,(G, K, t, t) of continuous r-radial functions on G with compact support is 
commutative. Once this condition is assumed for the triple (G, K, t), one can develop a 
very satisfying theory for t-spherical functions on G, i.e., for spherical functions attached 
to the vector bundle G XK V, over G/K (actually, this theory is well-adapted also in a 
more general setting). Moreover, the identification of Gelfand triples associated with vector 
bundles G x K V, is highly facilitated by a criterion which is essentially due to Deitmar 
(see [ll]; other references and historical comments are given in [31, Section 5.11). In 
particular, (G, K, t) is a Gelfand triple if and only if Q,, is multiplicity free or if and only 

3 Recall that, in the case of real hyperbolic spaces, the corresponding elements of C”(G, P, a Q eih @ 1) 
are identified to (standard) differential forms on K/M (see e.g. [14, Section 81 or [32, Section 21). 

4 In the sequel, we shall frequently quote results from references [32] or [33]. At this time, the proofs of 
these results can only be found in [31]. 
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if the algebra D(G, K, t) of left-invariant differential operators acting on P(G, K, t) is 
commutative. 

Assume (G, K, t) is a Gelfand triple, and let @ E P(G, K, t, t) with Q(e) = Id. 
Then 0 is a r-sphericalfunction on G if @ is an eigenfunction for the algebra D(G, K, t), 
in the sense that there exists a character XQ of D(G, K, t) such that 

for any D E D(G, K, t) and for one nonzero 6 E V, (hence for all ,$ E V,). The set of 
r-spherical functions on G will be denoted by E(G, K, t, t). 

Actually, r-spherical functions on G have three other equivalent characterizations: as 
characters of the convolution algebra C,(G, K, t, t), as solutions of functional equations 
and as eigenfunctions with respect to convolution with C,(G, K, t, t) (see [32, Section 31). 

Assume from now on that G = SU(n, 1) and K = S(U(n) x U(l)), and fix t = r& 
with 0 ( p + q 5 n. By Proposition 3.1, (G, K, t) is then a Gelfand triple (in fact, this 
would be the case for any t E K^ when G = SU(n, l), see [26] or [ 111) and we can apply 
the r-spherical function theory to our setting. Let us introduce first some more notation. 

Using the Iwasawa decomposition G = K AN, we denote by H the Iwasawa projector on 
A such that H (ka, n) = t and by & the projector on K. Then a principal series representation 

rc,,,: acts on X,,A~K 2: L2(K, M, C) by 

n,,*(x)f(k) = e-(ih+Q)W-‘k) f(k(x-‘k)) (VX E G, Vk E K). 

For o E E(t), define P,’ as in (4.5). Put J, = (P,‘)*, i.e., J,’ is the generator of the 
one-dimensional space HomK (V, ,7&J 2: HomK (V, , L2 (K, M, a)) defined by 

where P, denotes the orthogonal projection of V, onto its a-isotypical component V, (a) 2: 
Vu. For D E fi(t) and h E C, it is clear that the map 

x I-+ D&(X) = P, 0 n&x-‘) 0 J,’ (5.1) 

defines a r-radial function on G. 

Theorem 5.1. For ‘5 = &, g E I%(T) and h E C, set 0: h as in (5.1). Dejne A, as in 
Proposition 4.4. Then: 

(i) @;.A E E(G, K, t, t). Moreovel; for any .$ E V,, 

A,@&(.)< = [k2 + (n - k>21 @:,A(.){~ 

with 

I p+q ifa =D;,~, 
k, = p+q- 1 ifu=O~_,,qorO.=o~.j,_l, 

pfq-2 ifa=c&l,q_l. 

(5.2) 

(5.3) 
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(ii) 

(iii) 
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@i h admits the following representation as Eisenstein integral: 

dim t 
Q&(x) = dima 

s 
dke-(ih+p)H(xk)t(k) o P. o t(k(xk)-‘). 

K 

(5.4) 

In particuhs @i h is holomorphic in the variable h. 
Z(G, K, r, t) =’ {@;,, : - CT E M(t), h E @/{fl)], i.e., all t-sphericalfunctions on 
G are associated with principal series no,h with o E I@(T) and h E C/{&l}. 

Proof. The fact that @i h is t-spherical follows from [32, Proposition 71. The eigenvalues 
description for the Lapiacian follows from Proposition 4.3, once we remark the identity 
@z,,(s)6 = ~~,~(.)(.T~~). Assertions (ii) and (iii) are, respectively, Propositions B.14 in 
[31] and Proposition 9 in [32]. 0 

Remarks. 
1. The unitarity of the principal series representations implies the identity @t,*(x)* = 

@zh(x-‘)foranyx E Gandh EC. 
2. Thl Weyl group action on the same representations yields the relation #i A = @i,_* for 

all h E @ (see Section 3.1). 

It was remarked in [33], Section 4 (see also [9]), that the spherical Fourier transform of 
t-radial functions on G is naturally defined as the Gelfand transform of these functions 
(actually, the set _E(G, K, t, t) of t-spherical functions can be defined as the Gelfand 
spectrum of C,(G, K, t, t)). In our setting, according to item (iii) in the previous result, for 
F E C,(G, K, t, t), we define a spherical transform ‘,Yk *(F) of F associated with each 
principal series representation no,1 such that d E G(t) bi 

3-I:,,(F) := -& 
s 

dx tr(F(x)@&(x-I)} E @. (5.5) 
G 

Here, and thereafter in Section 5, the measures on G and K are normalized as in Section 6. 
The spherical Fourier transform of F is, by definition, the collection of (even) functions on 
C: 

We can state now the main result of this section, namely, the inversion formula for the 
spherical Fourier transform on C,“(G, K, t, t). 

Theorem 5.2. Let t = TL,~ for 0 5 p + q 5 n. The spherical Fourier transform on 
Ccm (G, K, t, t) is inverted by the following formulas: 
(i) ifOip+qsn-l,foranyxEG, 

+CC 

F(x) = c cu 
s 

&(a) N:,,(F) Q&(x), 
c&(s) 0 

(5.6) 
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where co > 0 is a normalizing constant depending only on o. 
(ii) ifp + q = n, the following discrete term must be added to the right-hand side of (5.6): 

(5.7) 

where o is a selected M(t)-parameter such that the discrete series nWuy .sc is injinitesi- 
mally equivalent with a subrepresentation of the nonunitaryprincipal series n, _t (see 
Proposition 3.5), and CL > 0 is a constant depending only on cr. 

Remark. Although this theorem is a particular case of Eq. (46) in [9], it deserves some 
comment, notably in case (ii). The t-sphericalfunction 0: *i occuring in (5.7) is harmonic 
by (5.2) and the whole discrete term (5.7) represents the harmonic component of F, exactly 
as in Theorem 3.4. Actually, if one associates to the discrete series TC~ := rrWy.sG a t- 
spherical function @& as in (5. l), one should observe that (generically for q) 

(and that thesefunctions are L*), so that the discrete term (5.7) could be rewritten as 

which makes the comparison with Theorem 3.4 more clear. On the other hand, the Plancherel 
measure dv, (h) (with o as in the statement (ii) of the theorem) has its first pole on the 
positive imaginary axis at ho = i (all poles of dv, are listed in (6.1)) and the discrete 
term should arise then from the residue calculus of this measure at A0 after the integration 
contour is shifted ‘up’. It is understood that this discussion is not a demonstration. However 
it is strongly suggested by the comparison with a similar phenomenon that occurs in the 
case of the bundle of dij%erential forms over real hyperbolic spaces (see Theorem 6.15 and 
Proposition 6.24 in [31] or [33, Section 41). 

Thanks to the Lefschetz decomposition for r, (Proposition 2. l), it is clear that the theorem 
above extends immediately to radial functions F E CcM (G, K, tr , r,.). On the other hand, 
the Plancherelformula for L*(G, K, rr , rr) follows from the inversion formula by standard 
arguments (see e.g. [31, Section 6]), and we omit the details. Finally, let us mention that 
a Paley-Wiener Theorem for the spherical transform can be borrowed, in theory, from 
Campoli’s results ([7, Section 3.2.11). However, the result is not very readable as long as 
we do not know very explicitly the r-spherical functions. 

5.2. Fourier transform of diflerential forms 

In this section, we introduce the Fourier transform of (primitive) differential forms on 
Hn(C) and we deduce from Theorem 5.2 the inversion and Plancherel formulas for this 
transform. 

As usual, fix t = r& with 0 5 p + q 5 n. Remind that the Haar measure on G and K 
are normalized as in Section 6. With the same notation as before, if f E f(G, K, t) and 
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n is a (principal series or discrete series) representation occuring in the decomposition of 
L*(G, K, &) (see Section 3), set 

x;(f) := -& s dx jr(x) o J; f(x) E IH, 

G 

(5.8) 

(whenever this integral converges). If n = rrU,h is a principal series representation, we 
shall write ‘Hi,*(f) instead of ‘Hi,,, (f). Note that, in this case, ‘Hi,,(f) is an element of 
Cm(K, M, a) if, for instance, f is taken in C,OO(G, K, t), which we shall suppose from 
now on for convenience. The Fourier transform off E C,OO(G, K, t) is, by definition, the 
collection of Co3 (K, M, a)-valued functions 

Remarks. 
1. Definition (5.8) is motivated by an argument given in [31, Section 6.31. Camporesi 

[8] uses a slightly different one. The comparison between our respective de$nitions is 
facilitated by the following expansion: 

T-&(f)(k) = dimrl dima 1 dxe-(i*+p)H(x-‘k)p, t(k(x-‘k)-*)f(x). 

G 

2. We have introduced in Section 5.1 the same notation for the spherical transform, but a 
t-sphericalfunction is always denoted with a capital letter, while afunction of type t is 
always denoted with a lower case one, which excludes any ambiguity. 

The inversion formula and the Plancherel Theorem for the Fourier transform can then 
be deduced from Theorem 5.2 (the inversion formula can be also taken as a particular 
case of [8], Theorem 1.1). Although the proofs are rather technical (especially in the case 
p f q = n), we shall omit them, since they are exactly the same as the ones given in [3 l] for 
differential forms on real hyperbolic spaces. Note that these results are exactly the analytic 
versions of the abstract Plancherel theorem established in Section 3. 

Theorem 5.3. Fix t = TL,~ with 0 5 p + q 5 n. The Fourier transform on C,O” (G, K, r) 
is inverted by the following formulas: 
(i) zfOzp+qin-l,foranyxEG, 

f(x) = dimt 

+cO 

du,(h) P,’ 0 n,,~(x-~) T-&(f). (5.9) 

(ii) ifp + q = n, the following discrete term must be added to the right-hand side of (5.9): 

(dim r)ci P,’ 0 X0,-i (x-‘)X:,-i (f ), (5.10) 
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where o is a selected M(t)-parameter such that the discrete series TC,, .J~ is infmitesi- 
mally equivalent with a subrepresentation of the nonunitary principal series ~~,_i (see 
Proposition 3.5). 

In both cases, the constants are the same as in Theorem 5.4. 

Theorem 5.4. Fix t = ti,q with 0 4 p + q 5 n. Set, for short, rrq := n,,.g, (see 
Theorem 3.4) and keep notations of Theorem 5.3. Then: 
(i) zfOIp+qin-l,foranyfEC,W(G,K,t), 

IIf I&,K,r) = (dimt)* c c, 
s 

dv,(h)II’Ft~,*(f)ll.z(K,M,a)’ (5.11) 

a&(s) 0 

and the Fourier transform extends to a bijective isometry from L*(G, K, 5) onto 

@ L*(R+, (dimr)*c, du,; L*(K, M, o)). 

O&(S) 

(ii) ifp + q = n, the discrete term 

(dim t>*cb Ill-t& (f)ll&,, 

must be added to the right-hand side of (5.1 l), and the Fourier transform extends to a 
bijective isometryfrom L*(G, K, r) onto 

03 L*(!R+, (dim t)*cC du,; L*(K, M, a>> @ (dim t)*ck’Fl+. o&(s) 1 
Remarks. 

1. Obviously, Proposition 2.1 induces similar results for all (not necessarily primitive) 
differential r-forms on Hn(C). 

2. The dimension oft = & will be given in Lemma 6.2. 

6. The Plancherel measure 

In this section, we give an explicit expression for the continuous Plancherel measure 
dv,; 4 (A) on [w that appeared in Theorem 3.2 and in results of Section 5. This expression 
will also be useful in Section 7. 

In [28], Theorem 3.l(iii), were given the Plancherel measures du, (A.) associated with 
all principal series representations no,h of the group G = SU (n, 1). Thus, our purpose is 
to specialize Miatello’s result to the principal series representations that contribute to the 
continuous part of the Plancherel formula. Obviously, it suffices to consider the M-types 
(7 = c&. 
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Let us fix some more notation and precise normalizations of Haar measures. Since du, (h) 
is known to be absolutely continuous with respect to the Lebesgue measure dk on R, we 
shall write 

du,, (A) = u,(h) . dh. 

Then v, can be viewed as a meromorphic function on C, with poles on the imaginary axis. 
Moreover, when restricted to R, V, is a non-negative even function. 

Let 0 be the Cartan involution on g associated with I. Then 

(X, Y) = -&B(X, eY> 

defines an inner product on g (the constant has the same meaning as in (4.1)). This inner 
product induces Riemannian measures dz? and d,& on G and K, respectively. If vol K is the 
volume of K with respect to di, put dx = (vol K)-’ ti and dk = (vol K)-’ di. 

In the sequel 

a. I 

= b!(a -b)! 

denotes the usual binomial coefficient. 

Theorem 6.1. Let 0 5 p + q ( n - 1. Set m = min(l - n - p + 41, In - p + 41) and 
M = max(l - n - p + ql, In - p + q I). Then the Plancherel density associated with 
principal series representations nor ,h is given by the following formulas: 
(i) ifn - p + q is even, for any hPZ C, 

(ii) ifn - p + q is odd, for any ), E C, 

u~;,q@)=&(n- p-q)(i)(:) 

X th 7W2) x2 

nh/2 
fi (A2+k2)2 fi (A2 +k2). 
k=l k=m+2 

k odd k odd 
k#n-p-q 

In both cases, vu; 4 has (simple) poles in the set 

S,,, = (fi(n - p - q)} U {&i(M + 2 + 2Z), 1 E N}. (6.1) 
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Proof. We recall first Theorem 3.l(iii) of Miatello [28], which gives the Plancherel density 
v,,(h) associated with any CT E 2 when G = SU(n, 1). Let 0 have highest weight written 
in the form 

II-1 

Pb=CskBk&k 

k=2 k=2 

(the &k’s are defined as in (3.6)), with s, ~2, . . . , sn_l E Z and s2 1 . . . p s,-1 2 0. Set 
sn = 0. Then 

h 2 
vu@) = &(dimg) tnff 2 + 2sk’1+l+n-2k 

k=l [o ( 
(6.2) 

where 

ifs + n is even, 
if s + 12 is odd. 

The highest weight of a;,4 was calculated in (3. lo), but we used Baldoni-Silva’s parametri- 
zation of highest weights, which is slightly different from (although equivalent to) Miatello’s 
one. Namely, according to [l] or [2], highest weights of elements cr E ii? are written in the 
form 

Pa = ;h +&,+1)+&k% 
k=2 

withbt,... , b, E Z and b2 2 . . ’ 2 bn. Since ~~~~ Ek = 0, the dictionary is given by 
Sk = bk - bn and s = 2b, - bl. Hence, for CT = c& we get 

s2 = . . . = sq+r = 2, 
sq+2 = . . . = s,_p = 1, 
S,-p+r =. * * =sn =o, 
s=q-p-2. 

An easy calculation leads to 

= 22-2n fi[k2 + (n - p + q - 2k>*][A2 + (n - p - q)2]-’ 
k=O 

x [A2 + (-n + p + q)21-1. 

Changing the index k by n - p fq - 2k, we expand the right-hand side of (6.3) by discussing 
on the parity of n - p + q. Set m and M as in the statement of the theorem, and note that 
In - p - q1 5 m. Suppose for instance n - p + q even. Then 
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~[G12+C 2Q+t +s+n-2k * 

2 )] 
= p*nh* (2 + k*)* fi (2 + k2). (6.3) 

k=2 
k even 

k#=H-/‘-‘/ 

!,=!I,+2 
k men 

Besides, &, (h/2) = coth(rrh/2), and according to (6.2), it remains only to calculate the 
dimension of o;,~. 

Lemma 6.2. 
(i) if 0 5 p + q I n - 1, 

dimci,q = 
n-p-q n n 

00 

n(n-p-q) 

n P 4 = (n - p)(n -4) 
dlmap,q; 

(ii) if 0 < p + q I n, - 

dim rL,q = nf~~~-q(n~l)(n~l)=~~~:)ia:(~~~I~idim~~.u. 

Assertion (i) follows, after a long calculation, from Weyl’s dimension formula (see e.g. [24, 
Theorem 5.841). Assertion (ii), (which is useless here, but given for the sake of completeness) 
can be proved in the same manner or, more simply, by using the M-decomposition of ri, 4 
(Proposition 3.1). 

Putting together (6.2), (6.4) and the lemma, one gets assertion (i) of the theorem. The 
calculation is similar in the odd case, and we skip the details. As regards the poles of the 
Plancherel density, it suffices to remind the well-known Eulerian developments: 

+cx, 22 thrrz 
xzcothrrz=l+~-- - 

2 +aJ 
c 

1 
~ 

k=, z2+k2’ xz = Sk=, z2+k2’ 

Thus the theorem is proved. Cl 

Remark. In each result in which the Plancherel measure occured (Sections 3 and 5), 
the integration was pelformed on R+. Therefore, in these formulas, the expressions of the 
Plancherel densities given in the theorem must be divided by 2. 

Next result, although a priori of little importance, answers a natural question when one 
deals with principal series representations. 

Corollary 6.3. For any p, q, the principal series representation JC,;,~ ,O is irreducible (01; 
equivalently, has zero corresponding Plancherel density). 

Proof. A necessary and sufficient condition for such a representation to be reducible is 
recalled in a more general setting in Corollary 14.30 of Knapp [23], namely: if P = MAN 
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is a parabolic subgroup of a semisimple Lie group G with dim A = 1 and u E I@, then the 
corresponding principal series representation n,o is reducible if and only if: 
(a) the Weyl group W = W (g, a) has order 2, 
(b) if w denotes the nontrivial element, w .o = CT, and 
(c) the Plancherel density v,(h) verifies u, (0) # 0. 
For CJ = C& conditions (a) and (b) hold (see the proof of Theorem 3.2), but condition (c) 
falls since u, has a (second order) zero at h = 0 by the previous theorem. 0 

7. The heat kernel 

Fix t = rLqs, as usual. For t > 0, the heat kernel associated with (primitive) differential 
(p, q)-forms on Ha(C) is the t-radial function Hr on G such that 

‘FI;,,(H,) = e-t[h2+(&)‘l (7.1) 

for each c E G(t) (kc was defined in (5.3)). Note that Hr belongs to the t-radial Schwartz 
space S(G, K, t, t). Details about the heat equation in the Schwartz setting and a motivation 
for definition (7.1) can be found in [33, Section 71. 

The expression of Ht is given by the inversion formulas (5.6) and (5.7), which obvi- 
ously hold in the Schwartz setting by density. As an example, if 0 5 p + q ( n - 1, 
then 

(7.2) 

It is clear also that the definition of the heat kernel can be extended to the Schwartz space 

of ~P,Y -radial functions on G by using Proposition 2.1. 
Next result gives some information about the decay at infinity of the heat kernel Ht (x) 

associated with (p, q)-forms on Hn(C), when x = e is the neutral element of G. Recall 
that the standard notation a(t) [+;,b(t) means limr++oo a(t)/b(t) = 1. 

Proposition 7.1. Let Hr E S(G, K, tp,q, tp,q) be the heat kernel associated with differen- 
tial (p, q)-forms on Hn(C). Then: 

(i) ifp + q # n, trH,(e) - c t -3/2e-rCn-J’-q)2, where c > 0 is some constant; 
t-++cC 

(ii) if p + q = n, trH,(e) - c’, where c’ > 0 is some constant. 
f_fCc 

Proof. Let us assume first Ht E S(G, K, TL,~, tLqq) and p + q # n. Then (7.2) 
implies 

+CC 

H,(e) = c C,e-t(n-k~)2 s du, (~)e-‘*2 Id,. 
od4(s) 0 

(7.3) 
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For convenience, set 

+oC 

%7(t) := s dv, (h)e-’ h2. 

0 

Put{= t1/2h. We look for an equivalent at infinity for the Plancherel density u, (t-‘/2<). 
Consider for instance the case n - p + q even (the calculation is similar in the odd case). 
By Theorem 6 1 u, (t-‘/*<) - . ? cst t-l, so that 

t++cc 

vu 0) - cst 
t++m s dy t-3/2e-<2. 

0 

Hence, by (5.3) and (7.3) 

Now, if Ht E S(G, K, rp,q, rp,q)9 we know (Corollary 4.3) that the Laplacian spectrum is 
entirely determined by its restriction to primitive (p, q)-forms. Thus our estimate still holds 
and this proves assertion (i) of the proposition. 

On the other hand, if p + q = n, assertion (ii) is clear since in this case the dominant 
term is the discrete one (see (5.7)). 0 

Remark. 
1. An immediate consequence of Proposition 7.1 is the calculation of the rth Novikov- 

Shubin invariant a,(M) (see e.g. [27, Section 51 for a general definition) of any locally 
symmetric space M whose universal covering is H”(C). Namely we have 

c+(M) = 
I 

+oo if r # :dimM 

0 ifr=idimM 

and recover thus in our particular case the observation made in [27, Section 71 about 
the Novikov-Shubin invariants of Kiihler hyperbolic manifolds. 

2. Haar measures given in Section 6 are settled in order to recover the classical result 

tr Ht (e) t_“+w)-” 

(see [28, Section 31). 
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